If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2=-120
We move all terms to the left:
-3x^2-(-120)=0
We add all the numbers together, and all the variables
-3x^2+120=0
a = -3; b = 0; c = +120;
Δ = b2-4ac
Δ = 02-4·(-3)·120
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*-3}=\frac{0-12\sqrt{10}}{-6} =-\frac{12\sqrt{10}}{-6} =-\frac{2\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*-3}=\frac{0+12\sqrt{10}}{-6} =\frac{12\sqrt{10}}{-6} =\frac{2\sqrt{10}}{-1} $
| 7(w-4)+5w=-4 | | 18x=-504 | | x*x*x+-7x*x+10x+3=0 | | 2x=-13=5 | | 10x+4=-86 | | 23+37-45x=-139 | | m/2-4=2 | | 7.2-4c=3c+3.52 | | 7x+5(x+3)=-33 | | (x-19)-7=-91 | | -3(x-16)=-48 | | 7=v-13 | | 5x2+2x=3 | | -7/8m=33/6 | | 2x-4(x-5)=-2+5x-13 | | 7x+28=8x+8 | | b/4+9=12 | | -9+7x+x=19 | | 2/3(6a+9)=16.8 | | -57=y/4 | | 84x+1=0 | | -16x-3=-48 | | X/2x=4x/80 | | 12a+2a-9a-a-2a=14 | | 5u-8=82 | | 3=t-13 | | 9+3x=12+4x | | 0.4x−2=x+0.04 | | 3(n-1=5n+3-2n | | 7=3(x-1+4(x-1) | | 42=3y-12 | | 9g+3g-2g=10 |